Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1674, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395951

RESUMEN

The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilación , NAD/metabolismo , Expresión Génica , Fosfatos/metabolismo
2.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121608

RESUMEN

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Asunto(s)
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polisacáridos/metabolismo , Flavobacteriaceae/genética , Genómica
3.
Biochemistry ; 62(2): 535-542, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36598875

RESUMEN

Kazal inhibitors hold high potential as scaffolds for therapeutic molecules, taking advantage of the easily exchangeable canonical binding loop. Different Kazal inhibitor backbones have been suggested to be therapeutically useful, but the impact of different Kazal-like scaffolds on binding properties is still largely unknown. Here, we identified trypsin-targeting human serine protease inhibitor Kazal type 1 (SPINK1) homologues in different mammalian species that cluster in two P2-P1 combinations, implying the coevolution of these residues. We generated loop exchange variants of human SPINK1 for comparison with Kazal inhibitors from related species. Using comprehensive biophysical characterization of the inhibitor-enzyme interactions, we found not only affinity but also pH resistance to be highly backbone-dependent. Differences are mostly observed in complex stability, which varies by over one order of magnitude. We provide clear evidence for high backbone dependency within the Kazal family. Hence, when designing Kazal inhibitor-based therapeutic molecules, testing different backbones after optimizing the canonical binding loop can be beneficial and may result in increased affinity, complex stability, specificity, and pH resistance.


Asunto(s)
Inhibidor de Tripsina Pancreática de Kazal , Animales , Humanos , Mamíferos , Tripsina/química , Inhibidor de Tripsina Pancreática de Kazal/química
4.
J Biomol Struct Dyn ; 41(17): 8201-8214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36271641

RESUMEN

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening disease. One hallmark is severe ADAMTS13 deficiency, causing ultra-large von Willebrand factor (VWF) multimers to accumulate, leading to microthrombi and lastly to microangiopathic hemolytic anemia and severe thrombocytopenia. Despite great success in recent decades, the molecular picture of the interaction between VWF and ADAMTS13 remains vague. Here, we utilized modern replica-exchange molecular dynamics simulations with the TIGER2h method to sample a vast configurational space of the isolated ADAMTS13-MDTCS domains and the exposure to its substrate and activating cofactor - the unraveled VWF-A2 domain. The sampling of binding sites and conformations was guided and filtered in agreement with available experimental evidence. We provide comprehensive information on exosites for each domain and direct pairs of interacting amino acids, for the first time. The major binding cluster for the active site of the MP domain contrasts the previous mapping of VWF-A2 residues and reciprocal binding pockets. Two major binding modes are revealed and provide access to conformational changes of an extended gatekeeper tetrad upon overcoming local latency during substrate binding and to a dedicated recruitment mechanism. Our work adds the first molecular interaction model that places previous experimental results in perspective to better understand disease-related mutations towards improved therapies. Numerous empirical targets are proposed to verify the given binding modes, to refine the overall picture of MP binding pockets, the role of Dis binding in MP activation and the passage of the Cys-rich domain through VWF-A2, thus deepening the understanding of a highly dynamic interplay.Communicated by Ramaswamy H. Sarma.

5.
J Inflamm Res ; 15: 3633-3642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35775010

RESUMEN

Objective: The pathophysiological mechanisms underlying chronic pancreatitis (CP) are still poorly understood. Human cationic (TRY1) and anionic (TRY2) trypsins are the two major trypsin isoforms and their activities are tightly regulated within pancreatic acinar cells. Typically, they exist in a molar ratio of 2:1 (cationic:anionic). This ratio is reversed during chronic alcohol abuse, pancreatic cancer, or pancreatitis due to selectively upregulated expression of TRY2, causing anionic trypsin to become the predominant isoform. The involvement of TRY2 in pancreatitis is considered limited due to the absence of disease-causing mutations and its increased prevalence for autoproteolysis. However, exacerbated pancreatitis in TRY2 overexpressing mice was recently demonstrated. Here, we aim to elucidate the molecular structure of human anionic trypsin and obtain insights into the autoproteolytic regulation of tryptic activity. Methods: Trypsin isoforms were recombinantly expressed in E. coli, purified and refolded. Enzymatic activities of all trypsin isoforms were determined and crystals of TRY2 were grown using the vapor-diffusion method. The structure was solved by molecular replacement and refined to a resolution of 1.7 Å. Equilibration molecular dynamics simulations were used to generate the corresponding TRY1-TRY1 model. Results: All trypsin isoforms display similar kinetic properties. The crystal structure of TRY2 reveals that the enzyme crystallized in the autoproteolytic state with Arg122 placed in the S1 binding pocket and the corresponding loop cleaved. The TRY2-TRY2 dimer confirms a previously hypothesized autoinhibitory state with an unexpectedly large binding interface. Conclusion: We provide a structure of TRY2, which is the predominant trypsin isoform in chronic pancreatitis and pancreatic cancer. A proposed autoinhibition mode was confirmed and the structural basis of the autoproteolytic failsafe mechanism elucidated.

6.
Transpl Int ; 35: 10057, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497886

RESUMEN

Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 µmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.


Asunto(s)
Trasplante de Corazón , MicroARNs , Animales , Fibrosis , Humanos , Isoinjertos , Ratones , Ratones Endogámicos C57BL , Miocardio , Albúmina Sérica Humana , Donantes de Tejidos
7.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563123

RESUMEN

A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall, which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles. We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels, as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype switching by release of extracellular vesicles.


Asunto(s)
Aneurisma de la Aorta Torácica , Exosomas , MicroARNs , Telocitos , Aneurisma de la Aorta Torácica/genética , Humanos , MicroARNs/genética , Miocitos del Músculo Liso
8.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408828

RESUMEN

(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.


Asunto(s)
Pancreatitis Crónica , Inhibidor de Tripsina Pancreática de Kazal , Escherichia coli , Predisposición Genética a la Enfermedad , Humanos , Mutación , Pancreatitis Crónica/genética , Tripsina/genética , Inhibidor de Tripsina Pancreática de Kazal/genética
9.
Interact Cardiovasc Thorac Surg ; 34(5): 841-848, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35137102

RESUMEN

OBJECTIVES: Up-regulation of tenascin C (TNC), a matricellular protein, produced mainly by vascular smooth muscle cells (VSMC), is associated with the progression and dilation of abdominal aortic aneurysms (AAA). The aims of this study were (i) to evaluate whether serum levels of TNC in patients with AAA patients correlate with aortic diameter and (ii) to clarify the role of TNC in formation and progression of AAA in a murine model. METHODS: In 15 patients with AAA serum levels of TNC were measured and correlated with aortic diameters. Moreover, in a murine calcium chloride AAA model, the impact of TNC deficiency on AAA diameter was evaluated. Finally, human VSMC were incubated with TNC to clarify its regulating potential. RESULTS: In the clinical cohort, there was a trend of correlation between serum TNC levels and AAA diameter (P = 0.055). TNC knock out mice with AAA showed significantly lower diameter ratios compared to the wild-type group (WT) 3 weeks (P < 0.05) and 10 weeks (P < 0.05) after AAA induction. Immunohistochemistry revealed increased TNC expression in aortic tissue from WT with AAA as compared sham-operated mice. Furthermore, WT with AAA showed a more disrupted Elastin structure than TNC knock out mice 10 weeks after AAA induction. In human aortic VSMC, TNC incubation induced expression of remodelling associated proteins. CONCLUSIONS: TNC might play a causative role in the formation, dilation and progression of AAA. Our results indicate that TNC might be a biomarker as well as a potential therapeutic target in the treatment of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Animales , Aorta Abdominal , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tenascina/metabolismo
10.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946663

RESUMEN

Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.


Asunto(s)
Escherichia coli/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Proteínas Represoras , Proteínas Supresoras de Tumor , Escherichia coli/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Humanos , Dominios Proteicos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Represoras/biosíntesis , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/aislamiento & purificación , Dedos de Zinc
11.
J Inflamm Res ; 14: 2111-2119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054303

RESUMEN

PURPOSE: Although strongly related, the pathophysiological effect of the N34S mutation in the serine protease inhibitor Kazal type 1 (SPINK1) in chronic pancreatitis is still unknown. In this study, we investigate the conformational space of the human cationic trypsin-serine protease inhibitor complex. METHODS: Simulations with molecular dynamics, replica exchange, and transition pathway methods are used. RESULTS: Two main binding states of the inhibitor to the complex were found, which explicitly relate the influence of the mutation site to conformational changes in the active site of trypsin. CONCLUSION: Based on our result, a hypothesis is formulated that explains the development of chronic pancreatitis through accelerated digestion of the mutant by trypsin.

12.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670747

RESUMEN

BACKGROUND: Tenascin-C (TN-C) plays a maladaptive role in left ventricular (LV) hypertrophy following pressure overload. However, the role of TN-C in LV regression following mechanical unloading is unknown. METHODS: LV hypertrophy was induced by transverse aortic constriction for 10 weeks followed by debanding for 2 weeks in wild type (Wt) and TN-C knockout (TN-C KO) mice. Cardiac function was assessed by serial magnetic resonance imaging. The expression of fibrotic markers and drivers (angiotensin-converting enzyme-1, ACE-1) was determined in LV tissue as well as human cardiac fibroblasts (HCFs) after TN-C treatment. RESULTS: Chronic pressure overload resulted in a significant decline in cardiac function associated with LV dilation as well as upregulation of TN-C, collagen 1 (Col 1), and ACE-1 in Wt as compared to TN-C KO mice. Reverse remodeling in Wt mice partially improved cardiac function and fibrotic marker expression; however, TN-C protein expression remained unchanged. In HCF, TN-C strongly induced the upregulation of ACE 1 and Col 1. CONCLUSIONS: Pressure overload, when lasting long enough to induce HF, has less potential for reverse remodeling in mice. This may be due to significant upregulation of TN-C expression, which stimulates ACE 1, Col 1, and alpha-smooth muscle actin (α-SMA) upregulation in fibroblasts. Consequently, addressing TN-C in LV hypertrophy might open a new window for future therapeutics.


Asunto(s)
Aorta/fisiología , Tenascina/metabolismo , Remodelación Ventricular , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Constricción Patológica , Fibroblastos/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Volumen Sistólico , Función Ventricular
13.
Eur Biophys J ; 50(5): 731-743, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33730176

RESUMEN

The effects of the chemical environment of menaquinones (all-trans MK-4 and all-trans MK-7) incorporated in lipid monolayers on mercury electrodes have been studied with respect to the thermodynamics and kinetics of their electrochemistry. The chemical environment relates to the composition of lipid films as well as the adjacent aqueous phase. It could be shown that the addition of all-trans MK-4 to TMCL does not change the phase transition temperatures of TMCL. In case of DMPC monolayers, the presence of cholesterol has no effect on the thermodynamics (formal redox potentials) of all-trans MK-7, but the kinetics are affected. Addition of an inert electrolyte (sodium perchlorate; change of ionic strength) to the aqueous phase shifts the redox potentials of all-trans MK-7 only slightly. The formal redox potentials of all-trans MK-4 were determined in TMCL and nCL monolayers and found to be higher in nCL monolayers than in TMCL monolayers. The apparent electron transfer rate constants, transfer coefficients and activation energies of all-trans MK-4 in cardiolipins have been also determined. Most surprisingly, the apparent electron transfer rate constants of all-trans MK-4 exhibit an opposite pH dependence for TMCL and nCL films: the rate constants increase in TMCL films with increasing pH, but in nCL films they increase with decreasing pH. This study is a contribution to understand environmental effects on the redox properties of membrane bond redox systems.


Asunto(s)
Termodinámica , Cardiolipinas , Técnicas Electroquímicas , Electrodos , Cinética , Mercurio , Oxidación-Reducción , Vitamina K 2
14.
Basic Res Cardiol ; 115(6): 76, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258993

RESUMEN

Ischemic mitral regurgitation (MR) is a frequent complication of myocardial infarction (MI) characterized by adverse remodeling both at the myocardial and valvular levels. Persistent activation of valvular endothelial cells leads to leaflet fibrosis through endothelial-to-mesenchymal transition (EMT). Tenascin C (TNC), an extracellular matrix glycoprotein involved in cardiovascular remodeling and fibrosis, was also identified in inducing epithelial-to-mesenchymal transition. In this study, we hypothesized that TNC also plays a role in the valvular remodeling observed in ischemic MR by contributing to valvular excess EMT. Moderate ischemic MR was induced by creating a posterior papillary muscle infarct (7 pigs and 7 sheep). Additional animals (7 pigs and 4 sheep) served as controls. Pigs and sheep were sacrificed after 6 weeks and 6 months, respectively. TNC expression was upregulated in the pig and sheep experiments at 6 weeks and 6 months, respectively, and correlated well with leaflet thickness (R = 0.68; p < 0.001 at 6 weeks, R = 0.84; p < 0.001 at 6 months). To confirm the translational potential of our findings, we obtained mitral valves from patients with ischemic cardiomyopathy presenting MR (n = 5). Indeed, TNC was also expressed in the mitral leaflets of these. Furthermore, TNC induced EMT in isolated porcine mitral valve endothelial cells (MVEC). Interestingly, Toll-like receptor 4 (TLR4) inhibition prevented TNC-mediated EMT in MVEC. We identified here for the first time a new contributor to valvular remodeling in ischemic MR, namely TNC, which induced EMT through TLR4. Our findings might set the path for novel therapeutic targets for preventing or limiting ischemic MR.


Asunto(s)
Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Insuficiencia de la Válvula Mitral/metabolismo , Válvula Mitral/metabolismo , Infarto del Miocardio/complicaciones , Tenascina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Válvula Mitral/patología , Válvula Mitral/fisiopatología , Insuficiencia de la Válvula Mitral/etiología , Insuficiencia de la Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/fisiopatología , Oveja Doméstica , Transducción de Señal , Sus scrofa , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba
15.
Basic Res Cardiol ; 115(6): 58, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32880713

RESUMEN

Pulmonary arterial hypertension is a severe and progressive disease characterized by a pulmonary vascular remodeling process with expansion of collateral endothelial cells and total vessel occlusion. Endothelial cells are believed to be at the forefront of the disease process. Vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2 (VEGFR-2), play a central role in angiogenesis, endothelial cell protection, but also in the destabilization of endothelial barrier function. Therefore, we investigated the consequences of altered VEGF signaling in an experimental model, and looked for translational correlates of this observation in patients. We performed an endothelial cell-specific conditional deletion of the kinase insert domain protein receptor (kdr) gene, coding for VEGFR-2, in C57/BL6 mice (Kdr∆end) and held them in an environmental chamber with 10% FiO2 or under normoxia for 6 weeks. Kdr knockout led to a mild PH phenotype under normoxia that worsened under hypoxia. Kdr∆end mice exhibited a significant increase in pulmonary arterial wall thickness, muscularization, and VEGFR-3+ endothelial cells obliterating the pulmonary artery vessel lumen. We observed the same proliferative vasculopathy in our rodent model as seen in patients receiving anti-angiogenic therapy. Serum VEGF-a levels were elevated both in the experimental model and in humans receiving bevacizumab. Interrupted VEGF signaling leads to a pulmonary proliferative arteriopathy in rodents after direct ablative gene manipulation of Kdr. Histologically, similar vascular lesions can be observed in patients receiving anti-VEGF treatment. Our findings illustrate the importance of VEGF signaling for maintenance of pulmonary vascular patency.


Asunto(s)
Presión Arterial , Proliferación Celular , Células Endoteliales/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Remodelación Vascular , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Apoptosis , Bevacizumab/uso terapéutico , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/sangre , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Estudios Prospectivos , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/sangre , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Función Ventricular Derecha , Presión Ventricular
16.
ESC Heart Fail ; 7(5): 2113-2122, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32639674

RESUMEN

AIMS: Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS: Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS: Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.


Asunto(s)
Infarto del Miocardio , Tenascina , Angiotensinas , Animales , Dilatación , Matriz Extracelular , Ratones , Ratones Noqueados , Infarto del Miocardio/complicaciones , Tenascina/genética , Remodelación Ventricular
17.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140281, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525466

RESUMEN

One of the most common mutations in the serine protease inhibitor Kazal type 1 (SPINK1) gene is the N34S variant which is strongly associated with chronic pancreatitis. Although it is assumed that N34S mutation constitutes a high-risk factor, the underlying pathologic mechanism is still unknown. In the present study, we investigated the impact of physiological stress factors on SPINK1 protein structure and trypsin inhibitor function using biophysical methods. Our circular dichroism spectroscopy data revealed differences in the secondary structure of SPINK1 and N34S mutant suggesting protein structural changes induced by the mutation as an impairment that could be disease-relevant. We further confirmed that both SPINK1 (KD of 0.15 ±â€¯0.06 nM) and its N34S variant (KD of 0.08 ±â€¯0.02 nM) have similar binding affinity and inhibitory effect towards trypsin as shown by surface plasmon resonance and trypsin inhibition assay studies, respectively. We found that stress conditions such as altered ion concentrations (i.e. potassium, calcium), temperature shifts, as well as environmental pH lead to insignificant differences in trypsin inhibition between SPINK1 and N34S mutant. However, we have shown that the environmental pH induces structural changes in both SPINK1 constructs in a different manner. Our findings suggest protein structural changes in the N34S variant as an impairment of SPINK1 and environmental pH shift as a trigger that could play a role in disease progression of pancreatitis.


Asunto(s)
Estrés Fisiológico , Inhibidor de Tripsina Pancreática de Kazal/química , Tripsina/química , Progresión de la Enfermedad , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Mutación , Pancreatitis , Conformación Proteica , Temperatura , Inhibidor de Tripsina Pancreática de Kazal/genética
18.
Exp Gerontol ; 119: 193-202, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30763602

RESUMEN

The aim of this study was to describe the potential associations of the expression of matricellular components in adverse post-infarction remodeling of the geriatric heart. In male geriatric (OM, age: 18 months) and young (YM, age: 11 weeks) OF1 mice myocardial infarction (MI) was induced by permanent ligation of the left anterior descending coronary artery. Cardiac function was evaluated by MRI. Plasma and myocardial tissue samples were collected 3d, 7d, and 32d post-MI. Age and MI were associated with impaired cardiac function accompanied by left-ventricular (LV) dilatation. mRNA expression of MMP-2 (7d: p < 0.05), TIMP-1 (7d: p < 0.05), TIMP-2 (7d: p < 0.05), Collagen-1 (3d and 7d: p < 0.05) and Collagen-3 (7d: p < 0.05) in LV non-infarcted myocardium was significantly higher in YM than in OM after MI. MMP-9 activity in plasma was increased in OM after MI (3d: p < 0.01). Tenascin-C protein levels assessed by ELISA were decreased in OM as compared to YM after MI in plasma (3d: p < 0.001, 7d: p < 0.05) and LV non-infarcted myocardium (7d: p < 0.01). Dysregulation in ECM components in non-infarcted LV might be associated and contribute to adverse LV remodeling and impaired cardiac function. Thus, targeting ECM might be a potential therapeutic approach to enhance cardiac function in geriatric patients following MI.


Asunto(s)
Envejecimiento/fisiología , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/fisiología , Envejecimiento/genética , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Imagen por Resonancia Magnética , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/sangre , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tenascina/sangre , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Remodelación Ventricular/genética
19.
ESC Heart Fail ; 2(3): 171-177, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28834679

RESUMEN

AIMS: The interest in cardiac remodelling (REM) has steadily increased during recent years. The aim of this study was to functionally characterize REM following myocardial infarction (MI) in mice using high-end in vivo and ex vivo methods. METHODS AND RESULTS: Myocardial infarction or sham operation was induced in A/J mice. Six weeks later, mice underwent cardiac magnetic resonance imaging and were subsequently sacrificed for ex vivo measurements on the isolated heart. Thereafter, hearts were trichrome stained for infarction size calculation. Magnetic resonance imaging showed significantly reduced ejection fraction (P < 0.01) as well as increased end-systolic and end-diastolic volumes (P < 0.01) after MI. The mean infarct size was 48.8 ± 6.9% of left ventricle. In the isolated working heart coronary flow (time point 20': 6.6 ± 0.9 vs. 13.9 ± 1.6 mL/min, P < 0.01), cardiac output (time point 20': 17.5 ± 2.6 vs. 36.1 ± 4.3 mL/min, P < 0.01) and pump function (80 mmHg: 2.15 ± 0.88 vs. 4.83 ± 0.76, P < 0.05) were significantly attenuated in MI hearts during all measurements. Systolic and diastolic wall stress were significantly elevated in MI animals. CONCLUSION: This two-step approach is reasonable, since data quality increases while animals are not exposed to major additional interventions. Both the working heart and magnetic resonance imaging offer a reliable characterization of the functional changes that go along with the development of post-MI REM. By combining these two techniques, additional information such as wall stress can be evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...